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ON THE ADMISSIBILITY OR INADMISSIBILITY OF FIXED 
SAMPLE SIZE TESTS IN A SEQUENTIAL SETTING' 

BY L. D. BROWN, ARTHUR COHEN, AND W. E. STRAWDERMAN 

Rutgers University 

Questions pertaining to the admissibility of fixed sample size tests of 
hypotheses, when sequential tests are available, are considered. For the normal 
case with unknown mean, suppose the risk function is a linear combination of 
probability of error and expected sample size. Then any fixed sample size test, 
with sample size n > 2, is inadmissible. On the other hand, suppose the risk 
function consists of the pair of components, probability of error and expected 
sample size. Then any optimal fixed sample size test for the one sided hypothe- 
sis is admissible. 

When the variance of the normal distribution is unknown, t-tests are studied. 
For one-sided hypotheses and componentwise risk functions the fixed sample 
size t-test is inadmissible if and only if the absolute value of the critical value of 
the test is greater than or equal to one. This implies that for the most commonly 
used sizes, the fixed sample size t-test is inadmissible. 

Other loss functions are discussed. Also an example for a normal mean 
problem is given where a nonmonotone test cannot be improved on by a 
monotone test when the risk is componentwise. 

1. Introduction and summary. In this study we consider questions pertaining to 
the admissibility of fixed sample size tests of hypotheses, when sequential tests are 
also available. Most of the questions refer to specific distributions such as the 
normal, exponential family, and Student's t, although the proofs will work in other 
cases as well. 

The first results are for the normal case with unknown mean and the hypothesis 
is one-sided or two-sided. If the risk function is a linear combination of probability 
of error and expected sample size, then any fixed sample size test is inadmissible. 
We will exhibit a better test. If, on the other hand the risk function is component- 
wise, that is, consists of the two components, probability of error and expected 
sample size, then any optimal fixed sample size test for the one-sided hypothesis is 
admissible. This latter result is true when the underlying distribution is exponential 
family and the support of the distribution is the entire real line. These results are 
true for other distributions and more general loss functions. See Remarks 2.2 and 
2.3. 

The next set of results is concerned with t-tests for the one-sided hypothesis, 
when the risk function is componentwise. The conclusion here is that the fixed 
sample size t-test is inadmissible if and only if the absolute value of the critical 
value for the test is greater than or equal to one. Hence for the most commonly 
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used sizes, the fixed sample sized t-test is inadmissible. (These results are true for 
Hotelling's T2 test as well. See Remark 3.2.) It will also be shown how to construct 
tests which improve on the fixed sample size t, that are admissible. 

The first results for the normal distribution are in Section 2. The t-test results are 
in Section 3. In Section 4 we discuss an ordering for loss functions for sequential 
testing problems. Also we again consider the normal one-sided testing problem. 
This time we offer an example of a nonmonotone test procedure whose risk cannot 
be matched by a monotone test procedure when the risk function is component- 
wise. For the linear combination risk the monotone procedures are an essentially 
complete class. See Brown, Cohen and Strawderman [2]. 

2. Normal distribution with unknown mean. The model in this section is that 
Xi, i = 1, 2, . .. are a sequence of independent, identically distributed normal 
random variables with unknown mean 9 and known variance which, without loss 
of generality, is taken to be one. We write X = (X1, X2, * ) so that X lies in an 
infinite product space. 

The first situation considered is to test the one-sided hypothesis H1: 9 < 0 vs. 
H2 : 9 > 0. We evaluate tests by a inear combination of the probability of error 
and expected sample size. Before stating the first theorem we need some pre- 
liminaries that will be appropriate for all remaining sections. 

The parameter space e has typical element 9. We test HI: 9 E ) against 
H2 : 9 E C2. The action space consists of pairs (n, T), where n is the stopping time 
and T = 1 or 2 depending on whether H, or H2 is chosen. The loss for action (n, 1) 
is nc for 9 E 1 and nc + 1 for 9 E= 2. For action (n, 2) the loss is nc + 1 for 
9 E 81 and nc for 9 E 02. Here c > 0 represents the cost of taking an observation. 
A decision function 8(x) consists of a set of nonnegative* functions 
8,/(x1, x2, . , xj), i = 0, 1, 2; j = 1, 2, * * *, such that 122.o 8U(X, x2, * * *,) = 

1, where 80j(XI, x2,9 - , xj) represents the probability of taking the (j + l)st 
observation given that (x12,X2 ,.. , xj) have been observed; 811(XI, X2 ... , Xj) 
represents the probability of stopping at stage j and accepting HI given 
(x1, X2,9 . . , xj) have been observed; 821(xI, x2, . ., xj) represents the probability 
of stopping at stagej and accepting H2 given (x1, x2, x , Xj) have been observed. 
Now forj = 2, 3, . . . let 4A(xI, x2, . . . Ix> 1) = ll-k .11ok(xI, x2, * * *, xk), repre- 
sent the conditional probability of not stopping after the first (j - 1) observations. 
(We let 4PI_I without loss of generality for the problems treated here.) The risk 
function for the test procedure 8(x) can now be written as p(O, 8) where 

(2.1) 
p(9,8)=2j:,IE9{4j,(XI,X2,9 

* * , X>_l)[(l - 8(X1, X2, * * ., 
X.)) 

+ 82j(XI, X2, , Xi)]} for 9 < 0; 

2j= E, y ( {j(XI, X2, * * * , Xj_I) [( 80j(XI, X2,* . . , Xj))cj 

+811(X1, X2,. ,X) ]}, for 9 > 0. 
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For nonrandomized test procedures, (i.e., 61(xI, x2,1 , xj) = 0 or 1, for each 
i, j, (X1, X2, * , X)) (2.1) may be written as 

(2.2) p(O, 6) = P6(W8) + cE0n8 for 0 < 0; 
= PO(V6) + cEOn8 forO >0, 

where W8 is the critical region in the infinite product sample space, V8 is the 
acceptance region, and na is the random stopping time. Let Sk = X. 1X, and let the 
fixed sample size test, denoted by 8(x), based on M observations be, reject if 

(2.3) SM > Mb, 

for some constant b. We prove 

THEOREM 2.1. The test 6(x), based on (2.3) is inadmissible. 

PROOF. Consider the test 8'(x) which does the following: if SM_-1 < - (M - 

l)a, then stop at stage (M - 1) and accept. If SM_I > M(a + b) - a, then stop at 
stage (M - 1) and reject. Otherwise, stop at stage M and reject if SM > Mb. Here 
a is a positive constant to be determined. We show for a, suitably chosen, that 8'(x) 
is better than 8(x). To do this first let RI = {(SM- 1, XM): (Sm- 1 + XM) > Mb) n 

{(SM-1, XM): SM_I <- - (M - I)a} and RI, = {(SM-1, XM): (SM-I + XM) < 
Mb) n {SM-1, XM): Sm-1 > M(a + b) - a). Now use (2.2) to note that the 
difference in risks, for 9 < 0, is 
(2.4) p(9, 8) - p(O, 8') 

=[Po (RI) - PO(RI,)] 

+ C[PG(SM- < - (M - l)a) + Pe(SM_, > M(a + b) - a)] 

> cP(Sm-1 < - (M - )a) 

-PO(SM-I > M(a + b) - a)Po(XM < - (M - 1)a) 

- c4(-(M- I)2[a+9]) 

-4'(- (M - I)a - 9)Pe(SM-i > M(a + b) - a) 

> 4(- (M - l)a - 9)[c - PG(SM-I > M(a + b) - a)]. 

Clearly (2.4) will be positive for all 9 < 0 provided a is chosen so that 

(2.5) PG(SM -I > M(a + b) - a) < c, 

and 

(2.6) ?(- (M - I)a -9) > 0. 

For all sufficiently large a, the conditions in (2.5) and (2.6) are satisfied. If 9 > 0, a 
similar argument shows again that the difference in risks is positive for all 
sufficiently large a. This completes the proof of the theorem. 

Next we consider the same model but test the two sided hypothesis Ho: 9 = 0 
vs. H10 9# 0. The fixed sample size test studied is the UMPU test, denoted by 8(x), 
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which rejects if 

(2.7) ISMI > Mb. 

We prove 

THEOREM 2.2. The test 8(x) based on (2.7) is inadmissible. 
PROOF. Consider the test 8'(x) which stops and rejects if ISM-11 > (M - 1)a, 

for a suitably chosen. Otherwise 8'(x) does as 8(x). For 9 # 0, since 8'(x) rejects 
more often and since E0n under 8' is clearly less than under 8, the risk for 8' is less 
than 8. Therefore the only case to study is when 0= 0. Let RI = 

{(SM-1, XM): ISM -1 + XMI < Mb) n {(SM-1 XM): SM-1 < - (M - l)a), RI, 
= (SM-1, XM): ISM-I + XMI < Mb) n {(SM-l1 XM): SM-1 > (M - I)a). The 
difference in risks from (2.2) is 

(2.8) p(o 8) - p(o, 6) = CPo{ISM-II > (M - 1)a) - Po(R1) - Po(RI) 

> 2{cPO(Sm-1 > (M - 1)a) 

-PO(SM- I > (M - 1)a)PO(XM < Mb - (M - l)a)}. 
Now proceed as in the proof of Theorem 2.1 to complete the proof of this theorem. 

REMARK 2.1. Other fixed sample size tests (not necessarily unbiased ones) can 
be similarly shown to be inadmissible. 

The last result of this section is concerned with the one-sided hypothesis, but 
now the risk is componentwise. That is, for a procedure 8(x), p(O, 8) for 0 < 0, 
consists of the pair 

(2.9) E9n0 = I7E1E6,{ 1(XI, X2, * , x1)(1- 80(x1,X2,* ,x))i} 
and 

(2.10) P9(Rejecting H,) = j1E I E0{ Aj(XI, X2,* . . , Xi >1)82j(XI, X2,I X , X)}. 

For 0 > 0, p(0, 8) consists of the pair (2.9) and 

(2.11) P9(Accepting HI) = E lo0{0 P(X1,X2 . * , Xj_)611(X1,x2 . * * 

We prove 

THEOREM 2.3. The fixed sample size test 8(x) based on (2.3) is admissible. 

PROOF. Suppose 8(x) is not admissible. Then there exists a test 6'(x) whose 
componentwise risk is better. In particular, 

(2.12) E0n8, < E6n, = M 

and 
(2.13) P9(Rejecting H1 under 8') < P0(Rejecting HI under 6) for 0 < 0 

P6,(Accepting H1 under 8') < P0,(Accepting H1 under 8) for 0 > 0, 

with strict inequality in (2.12) and/or (2.13) for some 0. The inequality in (2.12) 
implies that for 8'(x) there must exist a set of positive Lebesque measure on which 
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the probability of stopping at stage (M - 1) or less is positive. If not, then it must 
be true that 8'(x) always stops exactly at stage M. Since 8(x) is UMP among fixed 
sample size tests, strict inequality could not hold in (2.13). In fact for i = 1, 2, let 

AJ {(X1 x2, , Xj): (IX k=iok(x , X2, * , Xk)) 8(XXI X2, , xj) > 1/K), 
for K = 1, 2, . Then if u denotes Lebesgue measure we must have ,( Ui=I 
UjM I u K1A) > 0. That is, for some i, 1 < j M- 1, K < oo, U(AJK) >0. 
For now let L(A K) = E > 0 for some j < M I- and some K < oo. At this point 
we use the argument used by Stein [5] and Bimbaum [1]. That is, let E' represent 
Eucideanj space, let y > 0, B > 0, and consider 

(2.14) [P9(Rejecting HI under 8')/P9(Rejecting H1 under 6)] 

> (l/K)P(A2j)/P (SM > Mb) 

(l/1K)f(AK.XR(M1)1e 2(jI e) 

Xll I dxi/f(sM>Mb)e 2[(I-i)]fl dx, 

XllM I dxl /f{SM >Mb }e 2[x. _(Xj o) ]M 1 dx, 2j ~ ~ ~ ~ IM 

> (1/K)e GY?KR(M-j)} l{ SM <Mb-Y}~ 
x TTM _1t,AM _X?2TTM d 

X1Mlxdxi/j(S >Mb}e 2 i - 1* 1 x 

= Be-'. 

Clearly lin9,-Be-1 = oo which contradicts (2.13). A similar argument holds if 
ji(A K) = E > 0. This completes the proof of the theorem. 

REMARK 2.2. Suppose the Xi are multivariate normal with unknown mean 0 
and known covariance matrix and consider the fixed sample size chi-square test of 
Ho: 0 = 0. The theorems of this section are still true. 

REMARK 2.3. Let the 0 - 1 loss in the terminal decision be replaced by a more 
general function of the parameter, say L(9, T). (An example would be linear loss, 
which for the one-sided problem would be L(9, 1) = 0 if 9 < 0, L(9, 1) = k19 if 
9 > 0, L(9, 2) = - k29 if 9 < 0, L(9, 2) = 0 if 9 > 0, where k, and k2 are positive 
constants.) Then, for the normal case, the theorems of this section would be true 
with the addition of conditions like L(9, 2)1(9) -- 0 as -oo. For other 
distributions similar type conditions would be required. 

3. Student's t-tests. The model in this section is that Xi, i 1, 2,* are a 
sequence of independent, identically distributed normal random variables with 
unknown mean 9 and unknown variance a2. The one-sided hypothesis H1 : 9 < 0 
vs. H2 : 9 > 0 is considered when the risk is componentwise. Recall that the fixed 
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sample size t-test based on a sample of M is to reject if 

(3.1) t = ((M - I)/M)2SM/[2 (X - X) > C. 

For now let C > 0. Then (3.1) is equivalent to rejecting if SM > 0, and 

(3.2) S2 / (EM 1x2) > MC2/[(M - 1) + C2] = K. 
We start by proving 

LEmmA 3.1. If SM-I < 0, then SM/(V IX,2)2 < I for all XM > 0. 

PROOF. Note that for fixed SM,- SMl-I < 0 

(3.3) SM! (SWXi )~ = (SM-1 + XM)/ (z1'Xi + X2)2 

2X= /(Si 1jX + X2)2 + 1. 

Thus the lemma is proved. 
Now we can prove 

THEOREM 3.1. The fixed sample size test of (3.1) is inadmissible for M > 2 
provided C > 1. 

PROOF. Consider the test procedure which is the same as (3.1) except that when 
SM-I is negative, the procedure stops and accepts. By Lemma 3.1 this new 
procedure chooses the identical terminal decision as the t-test and therefore has the 
same probabilities of error. However, the expected sample size is always less for the 
new procedure. This completes the proof of the theorem. 

REMARK 3.1. The values of C > 1 cover most a levels of interest. 
If C < - 1, essentially the same argument given in Theorem 3.1 proves that the 

fixed sample size t-test is also inadmissible. For values of ICI > 1, similar argu- 
ments can be used to prove that the two sided t-test is inadmissible. 

REMARKu 3.2. Let Xi be multivariate normal with unknown mean vector 9 and 
unknown covariance matrix T . Test Ho: 0 = 0 vs. H1: 0 # 0 by the fixed sample 
Hotelling's T2-test. The analogue of Theorem 3.1 is true. This can be shown by 
using the fact that Hotelling's T2-test is derivable by the union-intersection 
procedure. 

Next we prove 

THEOREM 3.2. The test in (3.1) is admissible provided IC I < 1. 

PROOF. For now assume C > 0 and let 8'(x) be a test which can potentially be 
better than the t-test. The stopping rule for 8'(x) must assign positive probability to 
stopping at some time sooner than M. Otherwise the expected sample size would be 
greater than or equal to M. If it were equal, without ever stopping sooner, 8'(x) 
could not beat t since t is known to be an admissible test among fixed sample size 
tests. (The t-test is UMPU.) Hence for 8'(x), there must exist a set E contained in 
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Ei, for some =1, 2, - , M - 1, li(E) > O, such that 

(kllJ.'180k(X1, X2,. , Xk))6i,(Xl, X2, x, Xj) = E > 0 for i = 1 or 2. For now let 
= 1. For any point in E, note that the limit, as one Xk tends to oo, k =j + 

1, ***, M, of the quantity (Sj Em + k Xk)1(2 k' + 2m Xk2)2, is one. This k -j k ~k-j+Ik 
implies that there exists a set F contained in EM-j such that ,u(E X F) > 0 and 
such that for every (X1, X2, ... , XM) in E X F, t > C but 3' accepts H1 with 
positive probability. At this point it is clear that the Stein argument used in 
Theorem 2.3 shows that the probability of the type II error for 6', will exceed the 
probability of the type II error for the t-test for some (0, a2) points in the 
alternative space. Thus, such a 3' cannot beat t. Similar arguments work if 6' 
rejects instead of accepts sooner than M, and also if C < 0. This completes the 
proof of the theorem. 

In the remainder of this section we demonstrate how to construct admissible 
tests which are better than the fixed sample size t-test. The better test will be 
determined by the critical value of the given t-test. We will need 

LEMMA 3.2. If (SM _1/[M i1 Xi2} - B, then the range of t(XM) = {(SM- + 
XM)/[yMX IX, + X2 } is xk)i is 

(3.4) (-1, (B2 + 1)2] if B > 0, 

(3.5) [-(B2+l)2,1) if B<O. 

PROOF. Consider B > 0. Note that (dt/dXM) > 0 for XM < 0. Hence 
mfX,<O t(XM) = limxM_0C t(XM) = 1. Since inx>O t(XM) > O, it follows that 
the inf t(XM) = - I and the infimum is not attained. Now set (dt/dXM) = 0 and 

find that the attainable global maximum of t(XM) is (B2 + 1)4. The proof for 
B < 0 is similar. This completes the proof of the lemma. 

The lemma is the key to understanding the results of this section, since it gives 
precise bounds on the behavior of the statistic V1 2,/(E. 1X,)2 as M changes. 

We first find admissible procedures which dominate the t-test for critical values 
in the range 1 < C < [2(M - 1)/(M - 2)]2 (which corresponds by (3.2) to 1 < K 
< 2). 

Let 6(')(x) be the test which stops at time (M - 1) and accepts Ho if 

5M_ 1/(7M ili2)2 < (K - 1)2]. Otherwise 8(')(x) stops at time M and accepts or 
rejects depending on whether t < C or t > C. We prove 

THEoREM 3.3. Let M > 3. If 1 < C < (2(M-1))4/(M -I2), then 8(I)(X) is 
better than the fixed sanple size t-test and is admissible. 

PROOF. That 6(')(x) is better can be proved as in Theorem 3.1. Now suppose 
d(x) is better than 8(l)(x). Clearly 8(x) must stop with positive probability sometime 
before stage M. Suppose 8(x) stops at any stage before stage M and rejects. For 
fixed (X,, X2, . * , Xm- l), limx SM/(2 M IXi2)2 < 0, which means that there 
will be a set of points of positive Lebesgue measure in EM, which 8(x) will reject 
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but 86(')(x) will accept. By the Stein argument this implies that the type I error for 
8(x) will exceed the type I error for 8(l)(x) for some (9, a2) points in the parameter 
space. Suppose next that 8(x) stops for the first time at stage (M - 1) and accepts 
on a set of positive measure in E(M1) for which _SM.I/(; =11X22] > (K- 2). 

This would imply by Lemma 3.1 that there would be a set of positive measure in 
EM for which 8(x) would accept but 8(l)(x) would reject since for these points in 
E(M-1), supX[SM/(Vf 1Xi2)2] > K2. The Stein argument would then yield that 
the type II error for 6(x) would exceed the type II error for 8 (1)(x) for some (9, a2). 
Finally suppose 8(x) stops and accepts before stage (M - 1). It is easily seen, as in 
Lemma 3.2, that if 3(x) stops at stage j then 
(3.6) 

suP(Al X,,,)[(Sj + Xj+ . + +XM)/ (I-I.X7 + 1Z+i X)21 > (M -j)2. 

Since (M - j) > KI , forj = 1, 2,9 , (M - 2) this means again that 8(x) would 
be accepting for points in EM for which 8(l)(x) would be rejecting. Again 3(x) 
would have a type II error larger than that for 8 (1)(x) for some (9, a2) values. The 
above implies that 8(x) cannot be better than 8(l)(x), which completes the proof of 
the theorem. 

One can determine an admissible procedure 8(l)(x) which would improve on the 
fixed sample t for any critical value ICI > 1. For now let C > 0. First determine 
the integer k = 2, 3, * * *, for which the interval 

(3.7) {[ (M - 1)(k -1)/ (M -k + 1) ] -I, [ (M- I)kl (M -k) ] 
contains C. Note from (3.2) that (k - 1) < K < k. Define 8(')(x) as follows: for 
r = k, stop, and accept if 

(3.8) [SM+l-r/ (i=lX )2 < (K + 1 - r). 

Otherwise continue and stop and accept if for r = k - 1, (3.8) holds. Repeat this 
process for r = k - 2, * * *, 1. When r = 1, stop and accept if (3.8) holds, but 
reject if (3.8) does not hold. Provided M > (k + 1), the proof of Theorem 3.3 can 
be extended to yield 

THEOREM 3.4. For M > (k + 1), 8(1)(x) defined in (3.8) is admissible and is 
better than the fixed sample size t-test. 

4. Discussion of risk functions. There are four different risk functions that 
have been used to evaluate sequential tests of hypotheses. The four have an 
ordering from weakest to strongest. Each of the four considers probability of error 
as part of the risk function. In previous sections we have discussed the strongest of 
the four which is a linear combination of probability of error and expected sample 
size. We have also considered the next strongest which is componentwise with 
expected sample size as a component. The weakest of the four has been considered 
by Eisenberg, Ghosh and Simons [3]. The componentwise risk in this case includes 
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the random sample size (almost everywhere) as opposed to expected sample size. 
Kiefer and Weiss [4] consider the probability distribution of sample size as a 
component and define one test to be better than the other on this count if the 
sample size distributions are stochastically ordered for all parameter points. Our 
results provide results for these other loss functions in some cases. For example, the 
proof of Theorem 3.1 can be used to establish inadmissibility of the fixed sample 
size t-test when ICI > 1 for all four loss functions. Theorem 3.2 establishes 
admissibility for C I < 1 for three of the four loss functions. It would be desirable 
to further study properties of tests for each of these risk functions. 

Brown, Cohen and Strawderman [2] prove that if the risk is linear combination 
(the strongest of the four mentioned above) then under certain conditions all Bayes 
tests are monotone. A monotone test for a one-sided hypothesis being one which, 
at stage j, for sufficient statistic S>, stops and accepts for Sj < aj, continues for 
aj < Sj < bj, and stops and rejects for Sj > bj. We conclude this section with an 
example of a nonmonotone procedure which cannot be beaten by a monotone 
procedure when the risk is componentwise, with one component being expected 
sample size. All other conditions of the example satisfy the conditions required in 
the Brown, Cohen and Strawderman theorem. 

EXAMPLE 4.1. Let Xi, i = 1, 2, . . . be independent, identically distributed nor- 
mal variables with mean 9 and variance 1. The hypothesis is Hi: 9 < 0 vs. 
H2: 0 > 0. Let 8(x) be the test which stops and accepts at stage 1 if X1 < 0, stops 
and rejects if 0 < X1 < 1, continues if X1 > 1. Then 3(x) stops next at stage 2 and 
accepts or rejects as X2 < 0 or X2 > 0. Clearly 8(x) is a nonmonotone procedure. 

Suppose 6'(x) is a monotone competitor to 8(x). In order for 8'(x) to compete on 
the component E0n,8, 8'(x) must stop at stage 1 for all X1 < 1. For if it did not 
lim0, _,-(E,n8, - E0n) > 0. To see this, note that E0n8 = 1 + P9(X1 > 1), 
whereas E0n86 > 1 + P. (continuing). If there is an X1 set of positive measure 
whose elements are less than 1, for which 3'(x) does not stop then the Stein type 
argument shows that the probability of continuing for 3 goes to zero faster than for 
3' as 9-- - oo. Hence 8' must stop for ali X1 < 1. 

Next observe that 3' cannot stop and accept for X1 < C where C > 0. This is 
because as 9 -- oo the type II error for 3' would exceed the type II error for 3. To 
see this, note 

(4.1) P6,(Accepting H1 under 3')-P,9(Accepting H1 under 8) 

> 40(C - a) - 4)( - ) - D( - 220)] 

It is easily seen that as 9 tends to infinity the right hand side of (4.1) approaches 
zero from above and thus is positive for large 9. 

Thus 3', to preserve monotonicity, must stop and accept if XI < C' < 0 and 
reject for Xi > C'. But again it is easily seen that as 9 -- - oo, the type I error for 
3' would exceed the type I error for 6. Thus we have shown that there does not 
exist a monotone test which is better than 3. 
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